TABLE 3. Equations for Calculated Parameters

Mach Number, M:

$$
\begin{equation*}
\mathrm{M}=\sqrt{5 *\left[\left(\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{S}}}+1\right)^{(2 / 7)}-1\right]} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbf{M}=\text { Mach Number } \\
& \mathbf{P s}=\text { Static Pressure } \\
& \mathbf{Q c}=\text { Differential Pressure }
\end{aligned}
$$

True Air Speed, TAS:

$$
\operatorname{TAS}(\mathrm{kts})=\mathrm{M} * \mathrm{a}=\mathrm{M} * 38.96695 * \sqrt{\mathrm{~T}_{\mathrm{S}}}
$$

$$
\begin{align*}
\text { TAS } & =\text { True Air Speed (knots) } \\
\mathbf{T}_{\mathbf{S}} & =\text { Static Air Temperature }\left({ }^{\circ} \mathbf{K}\right) \tag{2}\\
\mathbf{M} & =\text { Mach Number } \\
\mathbf{a} & =\text { Speed of Sound }
\end{align*}
$$

Static Air Temperature, Ts:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{S}}\left({ }^{(} \mathrm{K}\right)=\frac{\mathrm{T}_{\mathrm{T}}}{\left[1+\mathrm{M}^{2} *\left(\frac{\gamma-1}{2}\right)\right]} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\mathbf{T}_{\mathbf{S}}= & \text { Static Air Temperature }\left({ }^{\circ} \mathrm{K}\right) \\
\mathbf{T}_{\mathrm{T}}= & \text { Total Air Temperature }\left({ }^{\circ} \mathrm{K}\right) \\
\gamma= & \text { 1.4, ratio of specific heat of air } \\
& \text { at constant pressure and volume }
\end{aligned}
$$

Potential Temperature, θ :

$$
\begin{equation*}
\theta\left({ }^{\circ} \mathrm{K}\right)=\mathrm{T}_{\mathrm{S}} *\left(\frac{1000}{\mathrm{P}_{\mathrm{S}}}\right)^{0.2857142} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
\theta & =\text { Potential Temperature }\left({ }^{\circ} \mathbf{K}\right) \\
\mathbf{T}_{\mathbf{S}} & =\text { Static Air Temperature }\left({ }^{\circ} \mathbf{K}\right) \\
\mathbf{P s} & =\text { Static Pressure }(\mathbf{m b})
\end{aligned}
$$

Water Vapor Equations

Vapor Pressure, e(mb) :

$$
\begin{aligned}
& \mathrm{e}_{\text {water }}=10^{[23.5518-(2937.4 / \mathrm{T})]} * \mathrm{~T}^{(-4.9283)} \\
& \mathrm{e}_{\text {ice }}=10^{[11.4816-(2705.21 / \mathrm{T})]} * \mathrm{~T}^{(-0.32286)} \\
& \mathrm{T}=\text { Static Air Temperature }\left({ }^{\circ} \mathrm{K}\right) \text { for Saturation Vapor Pressure } \\
& \mathrm{or}=\text { Dew/Frost Point }\left({ }^{\circ} \mathrm{K}\right) \text { for Partial Pressure of Water Vapor }
\end{aligned}
$$

Note:

StatTempDegK and ProjDP parameters recorded in the P-3B data set are substituted to calculate saturation vapor pressure and partial pressure of water vapor, respectively.

TSDEGC and ProjDP parameters recorded in the DC-8 data set are substituted to calculate saturation vapor pressure and partial pressure of water vapor, respectively. Also notice in the DC-8 data set there is a redundant static air temperature measurement, TSCALC, which is calculated by DADS. Although TSDEGC and TSCALC track closely they can diverge by $\approx 0.8^{\circ}$ at the low and high ends of the measurement range.

Specific Humidity, q :

$$
\begin{equation*}
\mathrm{q}(\mathrm{~g} / \mathrm{kg})=\frac{0.622 * 10^{3} * \mathrm{e}}{\left(\mathrm{P}_{\mathrm{s}}-0.377 \mathrm{e}\right)} \quad \mathrm{q}(\mathrm{ppmw})=\frac{0.622 * 10^{6} * \mathrm{e}}{\left(\mathrm{P}_{\mathrm{s}}-0.377 \mathrm{e}\right)} \tag{6}
\end{equation*}
$$

Relative Humidity, \% :

w.r.t. water,

$$
\mathrm{RH}_{\text {water }}=\frac{\mathrm{e}_{\text {water }}}{\mathrm{e}_{\mathrm{S}_{\text {water }}}} * 100
$$

$$
\begin{equation*}
\mathrm{RH}_{\mathrm{ice}}=\frac{\mathrm{e}_{\text {ice }}}{\mathrm{e}_{\mathrm{S}_{\text {ice }}}} * 100 \tag{7}
\end{equation*}
$$

